GnRH neurons stimulated by kisspeptin cause testosterone surge that shapes brain development in newborn male mice

From News at Otago:

Otago neuroscientists reveal mechanism crucial to moulding male brains

Wednesday, 12 November 2014

——————————–

Prof Allan Herbison

Professor Allan Herbison

Otago researchers have discovered that neural circuitry they previously showed was vital to triggering ovulation and maintaining fertility also plays a key role in moulding the male brain.

In new research appearing in the Journal of Neuroscience, a team led by Professor Allan Herbison shows that male-specific signalling in the Gonadotropin-releasing hormone (GnRH) neurons of new-born mice is crucial to generating a testosterone surge that occurs up to five hours after birth.

This brief but powerful increase in testosterone blood levels, which only takes place in males, is known to cause their brains to develop differently to females.

Among other effects, these brain differences are implicated in the patterns of neurological disorders that men and women suffer.

Professor Herbison says that sex differences in brain function are established during the later stages of foetal development and around birth, but the actual cellular mechanisms underlying these important actions remained unknown.

Through a series of investigations in mice, he and his colleagues have now shown that a small group of GnRH neurons in the brain’s hypothalamus become active only in new-born males, and not females.

Additionally, they found that a small population of kisspeptin neurons also appear at this time, once again only in males. Kisspeptin is a small protein that potently stimulates GnRH neurons. Last year Professor Herbison and colleagues published a landmark study detailing how it acts as a master controller of reproduction.

Read more.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s