Transparent graphene microelectrode one-atom thick developed to study neural activity

From Penn Medicine News Release:

October 20, 2014

See-Through, One-Atom-Thick, Carbon Electrodes are a Powerful Tool for Studying Epilepsy, Other Brain Disorders, Penn Study Finds

PHILADELPHIA — Researchers from the Perelman School of Medicine and School of Engineering at the University of Pennsylvania and The Children’s Hospital of Philadelphia have used graphene — a two-dimensional form of carbon only one atom thick — to fabricate a new type of microelectrode that solves a major problem for investigators looking to understand the intricate circuitry of the brain.

Calcium imaging of neurons in a rat hippocampal slice through transparent graphene electrode. Black square at the center is transparent graphene electrode and neurons are shown in green. Yellow traces shows a representative example of electrophysiological recordings with graphene electrode. (by Hajime Takano and Duygu Kuzum)

Pinning down the details of how individual neural circuits operate in epilepsy and other neurological disorders requires real-time observation of their locations, firing patterns, and other factors, using high-resolution optical imaging and electrophysiological recording. But traditional metallic microelectrodes are opaque and block the clinician’s view and create shadows that can obscure important details. In the past, researchers could obtain either high-resolution optical images or electrophysiological data, but not both at the same time.

The Center for NeuroEngineering and Therapeutics (CNT), under the leadership of senior author Brian Litt, PhD, has solved this problem with the development of a completely transparent graphene microelectrode that allows for simultaneous optical imaging and electrophysiological recordings of neural circuits.  Their work was published this week in Nature Communications.

“There are technologies that can give very high spatial resolution such as calcium imaging; there are technologies that can give high temporal resolution, such as electrophysiology, but there’s no single technology that can provide both,” says study co-first-author Duygu Kuzum, PhD. Along with co-author Hajime Takano, PhD, and their colleagues, Kuzum notes that the team developed a neuroelectrode technology based on graphene to achieve high spatial and temporal resolution simultaneously.   Aside from the obvious benefits of its transparency, graphene offers other advantages: “It can act as an anti-corrosive for metal surfaces to eliminate all corrosive electrochemical reactions in tissues,” Kuzum says. “It’s also inherently a low-noise material, which is important in neural recording because we try to get a high signal-to-noise ratio.”

Graphene array caption: Photograph of a 16-electrode transparent array. Inset, a closer view showing the electrode area. Fainted squares are the recording electrodes. (by Duygu Kuzum and Euijae Shim)

While previous efforts have been made to construct transparent electrodes using indium tin oxide, they are expensive and highly brittle, making that substance ill-suited for microelectrode arrays.  “Another advantage of graphene is that it’s flexible, so we can make very thin, flexible electrodes that can hug the neural tissue,” Kuzum notes.

In the study, Litt, Kuzum, and their colleagues performed calcium imaging of hippocampal slices in a rat model with both confocal and two-photon microscopy, while also conducting electrophysiological recordings. On an individual cell level, they were able to observe temporal details of seizures and seizure-like activity with very high resolution. The team also notes that the single-electrode techniques used in the Nature Communications study could be easily adapted to study other larger areas of the brain with more expansive arrays.

Read more.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s